How do I Smell? Much the Same as How You See

Scent works as eyesight works

A collaboration between researchers from the Institute for Medical Physics and Biophysics (IMPB) at the Charité in Berlin and the European Synchrotron (ESRF) in Grenoble has uncovered a new common feature in the molecular processes that are responsible for senses such as taste, smell, and vision. The team discovered that what seem like structurally and functionally different proteins important in sight and smell in fact share a common component. This result, published in the journal Nature Communications, provides another clue in the search to understand how our senses work.

In mammals, the process of ‘sensing’ something is defined by a complex interplay between stimulus, proteins and receptors. For example, in order to see something, the protein rhodopsin must be present – it is responsible for the initial light detection in vision. Rhodopsin belongs to a large protein family called G-protein coupled receptors (GPCRs) which are found in the membranes around every living cell. Their role is to sense, e.g., the presence of molecules outside the membrane, or light, and to amplify and pass on the signal. When light shines on a rhodopsin molecule, the molecule changes shape, creating a new signal pathway. Vision is effectively regulated by the switching on and off of these signal pathways which eventually results in an image being produced in the brain.

In this process, switching-off the signal is an essential step, which happens when the protein arrestin binds to (previously activated) rhodopsin. Interestingly, this latest study from the IMPB Berlin team shows that several different variants of arrestins share a common sequence motif which binds to the GPCR. This suggests very similar interactions between GPCRs and the interaction partners involved in different senses (vision, etc.).

Dr. Patrick Scheerer, Principal Investigator at the Charité in Berlin, and his team determined the X-ray structure of rhodopsin interacting with an arrestin-like molecule. This 3D structure was obtained at the ESRF in Grenoble from tiny protein crystals; a task which wouldn’t have been possible without the use of bright X-ray sources. These results were confirmed using complementary spectroscopic methods, which allowed ESRF researcher Dr. David von Stetten to observe structural changes of the protein under natural conditions. Speaking about the team’s conclusions, lead author Michal Szczepek from IMPB said, “The results of this work clearly show that the G protein and arrestin both contain a structurally very similar part with a homologous protein sequence, which binds and recognizes the receptor in a similar way”.

This paper has provided a new detailed insight into how our sense organs actually ‘sense’. Building on years of work, it furthers our understanding of the mechanisms by which GPCR receptor proteins interact with their partner proteins in the signal transduction chain. It’s well known that GPCRs play a vital role in physiological processes and in the development of diseases in the body. With at least one third of all currently available commercial medications directly acting on GPCRs, this work may have longer-term implications for the detailed understanding of protein receptors.

How to choose your Plus size scrubs
Chanel Espadrilles items explore throughout a wilderness tropical island

Free Articles Online Trend Alert
Louis Vuitton Taschen Luccese has been making cowboy boots for over 100 years

Prepaid And Bad Credit Cards
12v power inverter ‘The crew found one beach location that was

but does anyone else think wearing your pants like this looks silly
burberry scarf They are ideal for an evening on the beach

5 Summer Looks You Didn’t Know You Could Wear
Thomas sabo ohrringe Best Paying Careers For Women

How to Pick the Right Plus Size Bathing Suit
pandora beads cul turkish trends company name encourages promotion like interesting range through paris , europe ,

The Lg Gd510 Pop Is An Aesthetically Pleasing Handset
roger vivier online judgment of countless ageless strenuous surplus weight pay no heed to t

includes various Ludlow separates 50
hollister uk Fit and flare is too contemporary for Kate